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Inelastic scattering of quasiparticles in a superconductor with magnetic impurities
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We show that inelastic scattering of quasiparticles by trace concentrations of magnetic impurities may result
in significant changes in the nonequilibrium properties of superconductors. We used the approach of Miiller-
Hartmann and Zittartz to model Kondo scattering of conduction electrons by the magnetic impurities, and
hence, to calculate the rates of (i) quasiparticle trapping into the localized impurity states, (ii) trap-enhanced
recombination, (iii) pair breaking, and (iv) detrapping of localized quasiparticles by phonons, including both
deformation-potential and spin-lattice couplings. Our results indicate that these processes will give rise to
anomalies in the temperature dependence of kinetic parameters, which should be easily observable.
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I. INTRODUCTION

The study of magnetic impurities in superconductors
originated with the pioneering work by Abrikosov and
Gor’kov! in 1961, who demonstrated that the primary effect
is the destruction of superconducting coherence, while a fur-
ther consequence was predicted to be the formation of in-
tragap quasiparticle (QP) states localized on the impurity at-
oms themselves.”® Over the following three decades the
global consequences of magnetic disorder, such as the modi-
fication of the superconducting energy gap and coherence
length, were studied widely. However interest in the possible
localization of QP states remained relatively dormant until
the topic was stimulated by the ground-breaking experiments
of Yazdani et al® In this work the technique of scanning
tunneling microscopy was used to map directly the spatial
distribution of QP states due to adatoms and to chemically
introduced impurities. The results confirmed decisively the
predicted localization for both conventional and unconven-
tional superconductors. A comprehensive review of recent
developments in the understanding of impurity-induced
states in superconductors was given by Balatsky et al.'

To date, however, little attention has been paid to the role
which these localized states may play in the evolution of
nonequilibrium excitations in a superconductor, for example,
to the potential effects of the trapping of QPs by localized
states and to the recombination of one mobile with one lo-
calized QP, which might also be expected in analogy with the
role of deep levels for electrons and holes in semiconductors.
In this paper we present calculations which show that both
deformation-potential and spin-lattice couplings play a sig-
nificant role in facilitating transitions between the continuum
and discrete states bound to impurities. Thus QPs initially in
continuum states may undergo inelastic scattering with pho-
non emission and become localized at impurity atoms. The
impurities may also act as recombination centers and provide
rapid thermalization of a nonequilibrium initial distribution.
Furthermore, the formation of an intragap band of impurity
levels deep inside the gap, potentially even overlapping the
ground state, will modify the temperature dependence of
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thermalization. Finally, activation of localized QPs into the
continuum may result in an anomalous temperature depen-
dence of observable parameters characterizing the nonequi-
librium state, such as QP lifetime.'!

It might be expected that any such effects of isolated mag-
netic impurities in superconductors, while being of signifi-
cant academic interest, could hardly influence the macro-
scopic properties of a nominally pure device or sample.
However, an important conclusion from our calculations is
that the QP processes described above show up at much
lower impurity concentrations than has been previously real-
ized. We believe that experimental results already published
provide clear evidence for the involvement of the processes
considered in this paper. Indeed the original motivation for
the work was to understand unexplained results from experi-
ments carried out by ourselves and other groups on nonequi-
librium transport properties of nominally pure superconduct-
ors at very low temperatures. Anomalous experimental data
were obtained for quasiparticle lifetimes which (in some
cases) were orders of magnitude shorter than would be ex-
pected for pure material. The results and their reinterpreta-
tion will be described in a later section. The conclusion of
the present paper is that the likely cause of such effects is the
inelastic scattering of quasiparticles by the discrete states lo-
calized on magnetic impurities. Our calculations confirm that
magnetic impurities at concentrations of only few ppm can
give rise to quasiparticle trapping, enhanced recombination,
and pair breaking which at low temperatures totally domi-
nate intrinsic effects.

II. MODEL

To describe inelastic scattering of QPs in a supercon-
ductor with magnetic impurities, we will consider the bound
states within the model originally developed by Miiller-
Hartmann and Zittartz”® for quantum spins in a fully gapped
superconductor. Within this model two bound states exist
which are symmetrically located with respect to the center of
the energy gap. For ferromagnetic coupling, and for antifer-
romagnetic coupling with Kondo temperature (Ty) either
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very small or very large compared to the superconducting
transition temperature (7,,) of the intrinsic superconductor
(without magnetic impurities), these bound states lie very
close to the gap edges. However, for Tx~T,, the bound
states move close to the center of the gap. We will consider
the most general case of arbitrary location of the discrete
levels inside the superconductor gap.

In the model of Miiller-Hartmann and Zittartz the Hamil-
tonian of the system takes the form

H=H,+H', (1)

where H,, is the Hamiltonian of an intrinsic BCS supercon-
ductor and H' describes the interaction between impurity
atoms and conduction electrons. The corresponding interac-
tion potential has the form!

U(l')=2[Ml(l'—Ri)"'Mz(r—Ri)U"S], (2)

where R; is the coordinate of the impurity atom, S is its spin,
and o, are the spin Pauli matrices. Here the first term de-
scribes the spin independent part of the impurity scattering
potential and the second term describes the exchange inter-
action.

To consider phonon-assisted electronic transitions involv-
ing the bound states, we need terms describing the electron-
phonon interaction through both the deformation-potential
and the spin-lattice interactions. We use the four-dimensional
matrix formalism so that all quantities of interest are four-
component operators or 4 X 4 matrices. The full interaction
Hamiltonian describing phonon-assisted electronic transi-
tions has the form

1
Hip = Ef dri (r)V(r) (r), 3)
where i(r) and *(r) are four-component operators,
%(l')
ao=| | e =L, 0,00
r)= ¢%’(r) s () =1 (), (x), iy (x), ¢ (r) ],
(r)
4)
V(r)=2,Q;-VU(r), and U(r) is the 4 X 4 matrix of the form
_ ul(r)a'0+u2(r)0-S 0 )
Utr) = ( 0 —[uy(r)og + uy(r)o - S1*)”
(5)

where the superscript denotes the transposed matrix, and Q;
is the lattice displacement of the impurity due to vibrations.
This expression has been derived by expanding the first and
the second terms in Eq. (2), respectively, to include the dis-
placement of the impurity atom from its equilibrium site.

III. SELF-ENERGY

In a superconductor described by Hamiltonian (1) for an
impurity with either ferromagnetic or antiferromagnetic ex-
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change, bound states that split off from the gap are formed.”
We will consider the dilute impurity limit ¢ <<1. Here c is the
dimensionless impurity density in units of the condensate
density 2N(0)A, where N(0) is the density of states at the
Fermi level per spin in the normal state and A is the gap.
This Hamiltonian describes the unperturbed system while the
interaction described by Hamiltonian (3) causes inelastic
transitions between the continuum and discrete electronic
states. The usual electron-phonon interaction, which leads to
transitions in the continuum part of the spectrum of elec-
tronic excitations in a superconductor, has not been included
because the effect of magnetic impurities on electron-phonon
interactions under these conditions is small. Our derivation
of the transition rates follows the Eliashberg formulation.!>!3
In the dilute limit the shifts of the gap edge and all levels in
the continuum spectrum remain small, being proportional to
the density of impurities. Therefore we disregard all effects
of magnetic impurities on the continuum QP spectrum—both
level shift and broadening. It is important to note that al-
though the Kondo impurity affects electron spin, however,
scattering remains elastic: energies of spin-up and spin-down
impurity states are identical. Our objective is to discuss
inelastic-scattering events. Therefore, we will determine the
spatially averaged single-particle Green’s function for the
continuum spectrum with the additional interaction channel
given by Eq. (3). The extra contribution to the imaginary part
of the poles of this Green’s function will describe the rates of
transition in which we are interested.

We will derive the expression for the extra contribution to
the self-energy of the QP in a continuum spectrum due to
interaction with discrete levels. By neglecting the scattering
on different impurities, which gives the terms of the order of
c?<1, and separating the statistical averages over electron
and phonon operators, we obtain the Green’s function in the
form

G(x,x") =Gy (x,x") + > f dx,dx,Gy'(x,X;)

XQ, - VU(x; - R, Gy (x1,x,)
XQ, - VU(x, — R, Gy (%0, X") + ... (6)

Here Gj(x,x,) is the unperturbed Green’s function for the
system described by Hamiltonian (1).” In the limit ¢ <1 spa-
tial averaging can be carried out separately for all elements
of the Dyson equation. Indeed, we may replace the external
Green’s functions Gg(x,x;) and G{(x,,x’) by the spatially
averaged Green’s functions (_}g’(x—xl) and (_}g”(xz—x’), re-
spectively, where the top bar denotes the procedure of spatial
averaging. Since the second term contains the summation
over impurities, it is already proportional to impurity density
¢<<1; hence, replacing the external Green’s functions by spa-
tially averaged ones introduces inaccuracy only in higher-
order terms. Thus for the spatially averaged Green’s function
we obtain
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G(x,x') = (_?('f(x,x') + E f dxldxzé(')"(x -x1)Q, - VU(x, - R,)G{ (x1,X,)Q, - VU(x, — Ra)C_;g(xz -x')+... (7)

For the Matsubara Green’s function we therefore obtain

G(x,x',0,) = Gl(x,x",w,) - T, >,
roqj

hDg (0w, - o

n’) —m
dx,dx,G( (X — x|, w,

XE eq’j . VU(Xl - Ra)Ggl(Xl,Xz, (I)n/)eqj . VU(Ra - X2)681(X2 - X’,wn) + ... (8)
a

Here w, is the Matsubara frequency with w,=(2n+1)wT, T
is the temperature, D (w,) is the phonon Green’s function,
and q, Jj, wgq j» €q.js M, and N are phonon wave vector, branch
index, phonon frequency, mode polarization vector, mass of
the unit cell, and number of cells, respectively. To perform
spatial averaging we assume a random distribution of impu-
rities and replace the summation over impurities in Eq. (8)
by integration over their coordinates according to
>,(...)—nfdx(...), where n; is the impurity density. For
Gy, (x1,%;) we use the explicit form given in’

Ggl(Xl,Xz, w,) = Gy(X| = X, w,,)
J
+ ]T]E GO(XI - X wn)t(wn)GO(xi - X2»wn)’

9)

where Gy(x,w,) is the Green’s function of the perfect crys-
tal, J is the exchange integral, and #(w,s) is the transfer
matrix.” Integrating over the impurity coordinates makes the
system translation invariant, leading to the following expres-
sion for the spatially averaged Green’s function in momen-
tum space:

GH) = Gyl + 2 GKG(K). (10)

where N; is the number of impurity atoms. In momentum
space we may rewrite Eq. (8) in the form of the Dyson equa-
tion assuming that spatial averaging has already been per-
formed (and from now on omitting top bars),

Gm(p7 wn) = G(r)n(p7 wn) + G(r)ﬂ(p7 wn)zph(p’ wn) Gm(p’ wn) .
(11)

The expression for self-energy 2 ,,(p,w,) describing the
transitions into discrete states, for which only the second
term in Eq. (10) is responsible, can be written as

hDg (@, — w,)

2 h(P70)n) == TE E
! W 2MNoy,

dkdk'

W(eqj -p-k)U(p-k)

JN,
X WGO(k’wn’)t(wn’)GO(k,’wn’)U(p - k,)

X(eqi-P—Kk'). (12)

Here self-energy, the Green’s functions, transfer matrix, and
potentials are 4 X 4 matrices. For Gy(k,w,) we have

1 —(iw, + &) o Aio
Go(k,wn)=ﬁ< ( 'fk) 0 . 2 )
w,+ &+ A —Aio, —(lw, - &) oy
__ i(l)n0'070+ §k0'07'3 +A0’2’7’2, (13)

2.2 A2
w,+&+A

where o and 7 are Pauli matrices with o operating in spin
space and 7 in the space composed of electron-hole states,

0’0_ . Ty = l . O; = R

and similarly for 7. The o7 products in Eq. (13) describe
direct products of Pauli matrices leading to 4 X 4 matrices.
Figure 1 shows the Feynman diagram corresponding to self-
energy (12). Although Fig. 1 looks similar to the usual dia-
gram describing the electron-phonon interaction, it also
shows significant differences. Momentum can be transferred
to the impurity, and therefore, it is not conserved at vertices,
so that k and k' are independent of p, initial QP momentum,

Dyla-ay)

Go(k,a)n,) Gu(k’ @ )

Syt

FIG. 1. Feynman diagram for self-energy for electron-phonon
interaction with Kondo impurities.
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and q is the momentum which is carried by the phonon. The
triangle in the center of the diagram denotes the interaction
with the impurity involving virtual transitions to and from
the localized state, which are subject only to energy conser-
vation. The interaction energy (3) contains the gradient term
of a function which depends only on the distance to the
impurity atom and cancels out if averaged over the whole
volume. Therefore we have

Ye, (P-KUP-k) =0, (15)
k

where summation runs over all wave vectors (not limited to
the first Brillouin zone). Clearly the cancellation occurs be-
cause the function under the sum is an odd function of p
—k to be summed over symmetric limits.

Solving Eq. (9) for the transfer matrix yields

NJ
Wlt(w,,) =Gyl (K, 0,)G(k, 0,)G; (K, 0,) — Gy (K, »,).

(16)

The last term can be dropped because we need to keep only
the terms describing the transitions involving discrete levels.
Also since the transfer matrix does not depend on wave vec-
tor k, we may simplify the last expression by taking k to lie
on the Fermi surface, where &,=0. Thus we arrive at

%’Jt(wn) =Gy @) G, Goplw,). (1)
where the subscript F' means that the corresponding Green’s
function has been evaluated at the Fermi surface. We now
substitute this expression for the transfer matrix into the term
Gy(k,w,)t(w,)Gy(K",w,)NJ/N from Eq. (12) obtaining (af-
ter straightforward simplifications) the following result:

NJ
Go(k,m,) Wlt(wn) Gok',w,)

= Go(k, 0,) Gy 1 (@,) G, {(@,) Gy ((@,) Go(K', ,)
= Gm,F(wn) +&G(k, wn)a-OT3Gm,F(wn)
+ &G, pf(w,) 003Gk, @,)
+ &€ Gy(k, w,) 09736, pf(@,) 0y 3G (K, @,)
— &' Go(k, 0,) 073G, f(0,) 003Gk, w,),  (18)

where £=§, and &¢'=§&,,, and we keep only the last term
because after the substitution back into the self-energy, the
first three terms will give zero contribution due to condition
(15). Thus, introducing the notation Ug(p—Kk)=egy;-(p
—Kk)U(p—K) we rewrite the self-energy in a fully symmetric
form

fLin(a)n - wnr)

Su(pw)=-T2 2 >

' qj k,kl 2Mquj
XUqy(p = k)€ Go(k, 0,1) 007G, f(@,1) 0T
XGO(k’,wn/)qu(p—k’). (19)
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It is important to notice that if £é— o then £Gy(k,w,) —
-0y 73 and similarly for & Gy(k', w,), resulting in the conver-
gence of the expression for self-energy because of condition
(15). The linear terms in & and &' in the expressions for
£Go(k,w,) and € Gy(k’,w,) can be neglected because they
give a much smaller contribution associated with the change
of their sign crossing the Fermi surface when summing over
k or k'. It can also be shown that the dominant contribution
to self-energy in Eq. (19) comes from the summation close to
the Fermi surface. Thus we may replace éGy(k,w, ) with
0073(w121,+A2)/(wi,+§2+A2) and integrate the coupling po-
tentials over the Fermi surface. Therefore we have

2
w, + A?

C W, &+ A
* dé 3{) d’k
- —=—0b —U (p-k)
f_w wi,+§2+A2 SF|Vk| (P

do
aN(0)a\w’, + Azf 4—7:qu(p =K)lit,n (20)

where Sy is the Fermi surface, N(0) is the density of states at
the Fermi level in the normal state per spin, ag is the volume
of the elementary cell, and k. is the Fermi momentum. Using
this result and introducing the notation

qu(P -k)

~ dOy
Uqi(p) = N(O)a3 f oUWy, 21
we arrive at the following expression for self-energy:

ﬁin(a)n - wnr)

E (p7wn) == TWzE E
& <Y 2MNoy

X Uyi(p)G o p(@0,) Ugj(p) (@, + A?). (22)

For comparison, the self-energy due to the conventional
electron-phonon interaction in a superconductor can be writ-
ten as

hD(p—p’)j(wn — (,()n/)

Ee— h(pvwn) == TE 2
! n' p'j 2MNwgp);

X[ep-pn;* (P =P uei(p —p)IG(P', @),
(23)

where u,; is the electron-ion potential. In this notation the
structure of the self-energy for the two interaction mecha-
nisms, with phonon exchange between continuum and dis-
crete states and all states within the continuum, looks very
similar. Expression (22) needs minor renormalization. If
w, — % the terms under the sum become constant, leading to
divergence of the real part of the self-energy. This divergence
originated because we integrated over d¢ and d&’ with the
coupling potentials already averaged over the Fermi surface.
In original expression (19) it is absent because of condition
(15). We may eliminate this artificial singularity by taking
away the limiting value of self-energy when w, —%. How-
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ever it is only important for the real part of the self-energy,
which for the dilute limit is of no interest.

Following the standard procedure and using spectral rep-
resentations for the electron and phonon Green’s functions,
we sum over Matsubara frequencies. Performing an analytic
continuation from the imaginary to the real axes using the
substitution iw, — w+i48, we obtain for the imaginary part of
the self-energy,

ms o Ty f“drd,
m3 ,=——2 ——— Z Z
p 4 qj ZMN(l)qj % —A

XIm Dgj(z) Ug/(p)Im G, (z") Uy (p)

7' z
X | tanh— + coth— -z-7), 24
(an St o 2T)5(e z-2'),  (24)

where we have introduced
G(Z’)O'O F(Z’)i02>
-F'(2)ioy G()o, /)
(25)

Gm(Z,) = Gm,F(Z’)(Az - Z’Z)/A = (

Here G(z'), G(z'), F(z'), and F*(z') are the spatially aver-
aged electronic Green’s functions obtained within the model
of Miiller-Hartmann and Zittartz in the dilute limit. The lim-
its of integration in the second integral were set between —A
and A to emphasize that we are interested in the contribution
to self-energy arising from inelastic transitions involving
continuum and discrete states.
Calculation of the product of

three  matrices

l7qj(p)Im Gm(z’)ﬁqi(p) is straightforward leading to

ﬁqj(p)lm Gm(Z’)ﬁqj(p)
Im G(z')|UPo, -Im F(z")Uie,U™
=< (10 <>~2>,(26)
Im F(z')U'io,U* Im G(z")|U'*o

where we introduced

. u 0
Ugi(p) = ( . ) (27)
0 -y

with U" as the transposed matrix. After statistical averaging
of spin variables we arrive at
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10120 = [(eq; - (P~ K)uy(p - K)))>?
+ 88+ 1){{eg; - (p—K)uy(p - K)oy,

0i0217t* = [<<eqj -(p-K)u,(p- k)>>2

=SS+ 1){(eg; - (P~ K)ur(p = K)))Jiors,
(28)

where the ({...)) denotes the average over the Fermi surface
according to

(eq; - (p —K)uy ,(p - K)))

d
=N(O)a(3)f %eqj ~(p-K)u;o(p - k)|k=kF- (29)

Introducing coupling constants through

2
>

g (P =184/ () = S(S + 1)Ig{(p)

h
8™ ®)| =\ Sy (ew =W = ),

(30)

we define the analog of the Eliashberg function for electron-
phonon interaction with transitions between continuum and
discrete states

o)) = T4 8- 0 )ey’ @ (D)
q/

where ®(()) is the phonon density of states and (...) is the
symbol for averaging over directions of vector p. For com-
parison the conventional Eliashberg function is given by the
standard expression which can be written as

LEADE) = 3 Az - wg)le @A - al - pr)b.
hUF qQ.j

(32)

where g;(q)=\A/2MNwg €4 ;-qu.(q). Using Eq. (31) we
may write the expression for the imaginary part of self-

energy in the final form

!

2,000 2,00 * A ,
ImX,,(p,0) = ( ;p . 7 =- WJ dzf dz’ tanh—— + coth— Nw-z-7")- tanh—— — coth—
— 20,002 3,00 e Joa 2T 2T 2T 2T

><6(w+z—z’)}<l>(z)(

Im G(z")[ei(2) + S(S + D)a5(x)]oy  —1Im F(z")[@}(z) - S(S + 1) a3(2) Jior
Im F(z')[a}(2) - S(S + Dej(2) lior,

Im G(z')[@(z) + S(S + 1) a5(2) oy ) 59
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Deriving this expression we substitute Im Dy;(z)=27]d(z
—wq;) = 82+ wy;)] and then transform the result reversing the
sign of z in the second term.

IV. TRANSITION RATES
A. General expression for transition rates

In order to analyze the rates of QP transitions from an
initial state (p, €) belonging to a continuum, we calculate the
Green’s function including self-energy (33). This calculation
can be carried out within the Eliashberg model. In the dilute
limit we take the renormalization parameter as being fully
determined through interactions only within the continuum,
thus, neglecting all effects due to impurities. Solving the
equation for the one-particle Green’s function,

G_l(p,f) = G(_)l(p96) - Eph(p’e)’ (34)

we identify the poles describing inelastic interactions involv-
ing the discrete states. Taking e=¢'—il" and separating the
real and imaginary parts, we obtain the expression for tran-
sition rates in the form

1 _ ~
I'p(e)=- ez (O)[f Im(zl,ph + 21,ph) - fp(zl,ph - El,ph)
|
1 A
+A Im(Ezth + 2 ph)] 7 (0) El,ph + ;22!1;]1 s

(35)

where Z,(0) is the real part of the renormalization parameter.
The last relation holds true because from Eq. (33) it follows
that E] ph= 21 ph and Eth 22[;}1

Using the expression for self-energy (33) and substituting
it into Eq. (35), we obtain

o A
I'(e) = TWO)L dZL dz’(I)(Z){a%(z)Im|:G(Z') _ %F(Z’)]

+S5(S+ l)ai(z)lm{G(z’) + éF(Z')} {{tanh(z—’>

€ 2T
+ coth(%)] Se-z-7")- {tanh(%)
_coth<%)}5(e+z—z’)}, (36)

It is important to note that the sign of the contribution of the
anomalous Green’s function, F, in the combination of the
Green’s functions in Eq. (36), which defines the coherence
factors for various interactions, is different for deformation-
potential and spin-lattice couplings. This is because of the
reversal of sign associations for interactions involving
spins.'* The exact expressions for Im G(€) and Im F(e) are
obtained using Eq. (25) and the expression for the Green’s
function derived by Miiller-Hartmann and Zittartz. They
have the form

PHYSICAL REVIEW B 78, 174501 (2008)

A?- € é(e)
A 2 - Az(e)

B A’ - € Ae)
A 2(09-K%e
(37)

G(e) =

These functions are closely related to the quasiclassical
Green’s functions for a homogeneous case,

o) Ko
G (6)=6—; Fypy(€) = ————=.
W e-re T Ve - e

(38)
The imaginary parts of G(€) and F(e) can be expressed in
terms of real parts of Gyyz(€) and Fyyz(€). The energy €

and the order parameter A in Eqgs. (37) and (38) satisfy the
following equations:’

E=e+A3,(EAN); A=A+A3,(EA), (39)
where
- 1
5,(,8) = - — y (=),

Ty =y,

c \y* -1
3,(y,4) = —z—yzyO(l =Yo) (40)

—J)o

are the elements of the self-energy matrix for scattering by
Kondo impurities. Here y=€/A, yo=€,/A<1, and ¢ is the
discrete intragap level. To find solutions to the main terms,
we may use the simplified equations obtained from Eq. (39)
by taking the renormalized parameters y= e/A and Yo
=€,/ A in the denominators in Eq. (40). The simplified equa-
tions then become

N _y( 1 1 )
y=y—-¢— |\ - ~—— |
Y\F-5 7+

1 1
A= A+c—A<~ — - = ~), (41)
AT =50 T+
\1—_y2\y| (1-y0)
where ¢=c 30 . In order to solve the simplified equa-

tions we first note that from Eq. (40) 3,=—y,/y>,. Above
the gap edge both |3, ~ ¢ and |2,|~ ¢; as pointed out above
we ignore these corrections. Inside the gap the solution for
the imaginary part %7 has the form

1 1
Si=1/c- Z(|)’| _}’0)2(9[5— Z(|)’| _yo)z] . (42)

Within the range X # 0, the real part of the self-energy 3| is
given by

, 1
3= 500D+ 1 43)
Yo
Outside this range, but still inside the gap, 3| remains finite
with a dependence on impurity concentration changing from
Ve at the edge of the 3] # 0 range to ¢ away from it.
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FIG. 2. Quasiparticle trapping by magnetic impurity. A quasi-
particle initially in the continuum spectrum at energy € undergoes
an inelastic transition to a discrete level ¢, with emission of a pho-
non AQl=e—¢,.

Finally, inside the gap we obtain

(1 + )5/2 B 1
- = (bl =300
—Yo 4

1
X {E— Z(Iyl - yo)z] ,

Im G(y) =Im F(y) =

1-

These expressions describe the normalized density of bound
states inside the gap in a superconductor with magnetic im-
purities. This distribution is shgrp, with both its width and
height being proportional to vc. It is easy to confirm that
I!,dy Re Gyyyz(v)=c, corresponding to one QP bound state
for each impurity atom.

Finally, the classical spin limit corresponds to S— 0,
while simultaneously J— 0 so that JS=constant. In this limit
the localized spin acts as a local magnetic field. We note that
the expressions for the transfer matrix #(w,), and hence, for
the self-energies 2, and 3, [Eq. (40)] are identical to those
for a classical impurity spin,® except that the position y, of
the discrete level is different. Therefore all our results will
also correctly describe transitions from continuum to bound
states associated with classical impurity spins.

B. Quasiparticle transition from continuum to bound state:
Trapping

Using the Green’s functions given by Egs. (44) and (35)
we may now analyze different inelastic transitions. First, a
QP initially in the continuum state may become trapped on a
state bound to an impurity. This process is schematically
illustrated in Fig. 2. For the trapping rates we obtain
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) f de' (e~ e)[l G(€)<_+l)
0

7-lrap( E) h A il )

- éIm F(e’)(l - l)}[n(e— e)+1]1-f(€)].
€ T )
(45)

The integrand in this expression contains a product of sharp
and smooth functions. For a narrow (sharp) impurity band
inside the gap, replacing the smooth functions by their values
at the location of the discrete level, we obtain

1 1 1

7'trap( 6) Tlrap, 1 ( E) 7'trap,2( 6) '

! =cl<1 - @><£— 1>[n(6— &) + 1[1 - f(&)],
e/\A

7-trap, 1 ( 6) 1

! =cl<l—6—60><§+1>[H(E—Eo)+1][1 - fley)].

Ttrap,z( 5) )
(46)

Here n(e) and f(e€) are the phonon and QP distribution func-
tions, and the notations for the trapping times are 7y, for
deformation-potential interaction and 7,,, for the spin-
lattice interaction. The characteristic relaxation times for
phonon-assisted scattering on a magnetic impurity in the host
lattice 7(; 5y can be written in the form

5

1 1a1(A)< )(1 )

n 1dt(A)\T 11—y
l_s(s+1)a§(A)<A)3(l—y?))”
T B ) QZ(A) 1=y ' “n

where « is the parameter entering Eliashberg constant (32),
7y is the superconductor characteristic relaxation time for
deformation-potential coupling, and T. is the critical tem-
perature. The characteristic times describing inelastic transi-
tions between continuum and discrete states for both
deformation-potential (7;) and spin-lattice interactions (7,)
depend on properties of both the host lattice and magnetic
impurity.

For QPs at the edge of the gap, e=A, and the interaction
via the deformation potential vanish so that 7, =, and
trapping is due only to the spin-lattice interaction. This oc-
curs because of condition (44) for the discrete state, resulting
in nullification of the coherence factor for deformation-
potential coupling. In contrast, spin-lattice interaction, be-
cause of the sign reversal in the second term of the coherence
factor, dominates the trapping rate for all energies close to
the edge. This raises the possibility of measuring the charac-
teristic spin-lattice relaxation time 7, directly in experiments
where nonequilibrium QPs are excited to the states close to
the edge of the gap.
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FIG. 3. Activation of a quasiparticle from the bound state at
magnetic impurity by a phonon Q) =e—¢.

C. Activation of bound quasiparticle to continuum state:
Detrapping

Detrapping of a quasiparticle, which is bound to a mag-
netic impurity, occurs when it absorbs thermal phonons with
sufficient energy to excite it into the continuum spectrum.
This process is illustrated in Fig. 3.

The rate of detrapping from the localized state can be
calculated without direct evaluation of the broadening of the
bound state due to interaction with phonons. This is because
we are not interested in transitions from discrete states to an
individual state inside the continuum but only in the activa-
tion rate due to transitions into all available states. Therefore
we obtain an activation rate by balancing scattering-in and
scattering-out rates for the bound state at thermal equilib-
rium. The result is

1 =1r”l—ep(e)M L (48)
A

Tdetrap € A f 0(60) 7'trap( 6)

where fy(€) is the Fermi distribution function,

1 1 (" z exp(— Z%) 1 & 2
== di——| —|z+ - 1|+=
7-detra\p V2 1-€y/A \Vz+ XO —1L7

Vi [ T3> A-¢g)\| 1 A-e)\T
=—|—] exp|— —|3+2 —

4 A T T T A
+i(1+A_EO>]. (49)

T T

At low temperatures most final states for activated QPs are
close to the gap edge. For these transitions as well as for
trapping of QPs, which are initially close to the gap edge, the
dominant interactions are through spin-lattice interaction.

D. Interaction of quasiparticle in continuum with
quasiparticle in bound state: Recombination

The recombination rate via a bound state calculated from
Egs. (36) and (44) is given by
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;i hQ=¢€+ €

FIG. 4. A quasiparticle in a continuum state at € recombines
with a quasiparticle bound at a magnetic impurity at €,, emitting a
phonon with energy Q) =€+ €.

A ’ ’
FR,,(6)=J %[ImG(e’)<l+l>
0 T T

1 - l)}[n(s+ €)+1]f(€)
T T
€+ 60

0322
A T € ) €

X[n(e+ g) + 11f(&). (50)

+ éIm F(e’)(

=cC

Schematically this process is shown in Fig. 4.

The expression can be written in a more familiar form by
introducing the appropriate recombination coefficient R, and
density of trapped QPs n,,

FR,z(e) =Rn,;

R=— 6+6"[i(1+é)+i<1 é)]
t_2N(O)A A 7] € T € ’

(51)

which describes the maximum recombination rate in the ab-
sence of a phonon bottleneck effect.

For recombination of a QP at the edge of the gap (e=A)
with another QP, which is bound to an impurity, the coher-
ence factor vanishes for spin-lattice coupling but remains
finite for deformation-potential coupling. Therefore by mea-
suring the recombination rate at low temperatures for a non-
equilibrium QP distribution localized at the gap edge, we
may directly determine the characteristic relaxation time 7.

Figures 5—7 summarize our discussion of QP trapping and
on-trap recombination, and show the dependences of normal-
ized trapping rate (in units of 7;/¢) and on-trap recombina-
tion coefficient (in units of standard recombination coeffi-
cient R) on various parameters for quasiparticles with the
initial state at the edge of the gap.
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FIG. 5. Normalized trapping time and on-trap recombination
coefficient as functions of the position of the impurity level.

E. Breaking of Cooper pairs by phonons below 2A threshold

In a superconductor with discrete intragap states Cooper
pairs can be broken by a phonon with energy below 2A as
shown in Fig. 8. The only requirement is that a phonon has a
sufficiently high energy to activate one of the correlated elec-
trons from the Fermi level to a bound state while releasing
the second electron into a continuum of states above the gap
edge. Thus the phonon energy must satisfy the condition
A=A+ ¢, To calculate phonon-scattering rates in a super-
conductor with Kondo impurities, we must consider possible
transitions to bound states. These are taken into account by
the extra contribution to phonon self-energy. In the corre-
sponding Feynman diagram, shown in Fig. 9, this is given by
one of the lines being the Green’s function describing con-
tinuum states, while the other representing the discrete in-
tragap states. Repeating the same arguments as in the deri-
vation of the electron self-energy, we derive the following
expression corresponding to Fig. 9:

3.0 [T T 11.2
[ ¥ - — - > A
L \ |
2.5 \\ 11.0
[ \ ]
2.0F | 10.8
o \ 7
= [ \ 1
o [ E e
5 15F | 0.6
g [ \ i [am
O r \\ ]

1.0 AN 10.4
0.5 Tt 10.2
F—— e
0.0 L., [ [ [ [ [ 10.0
0 1 2 3 4 5 6
T/ To

FIG. 6. Normalized trapping time and on-trap recombination
coefficient as functions of characteristic time 7; for coupling of the
defect level to phonons due to deformation potential.
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FIG. 7. Normalized trapping time and on-trap recombination
coefficient as functions of characteristic time 7, for spin-lattice
coupling.

s} A ’
’ Z Z
Im 1, () = 27721\7(0)Af_0c dzf_A dz (tanhﬁ + coth2—T>

X8O -z-7")Re Go(z){ |:Im G(Z)
A
+—Im F(z’>}<lg},,,-(p)l2> +S(S+1)

A
X{Im G(z')-—Im F(z’)]<|gﬁ,j(p)|2> . (52)
Z

where Re Gy(z)=z/Vz>~A% The poles of the phonon
Green’s function are determined by

0% - o,
=2l 1, () =0. (53)
2w i ;
q.j
Taking (= w, ;—iy we obtain, after averaging over different

phonon polarizations and directions of phonon wave vector,

Eﬂl,j Q= wg )y (@)
y=- -
Eq,j Q- “’q,j)

Eq,j Q= )Ty j(0g,)
B NO(Q) ’

(54)

where N is ion density. Hence
4mN(0) (7 (* '
Q) =- mN( )f dzJ dz’ (tanhz— + cothi)
N o Joa 2T 2T

X8 -z-7")Re Go(z){a%(ﬂ){lm G(z')

+ éIm F(z’)} +8(5+ l)ag(ﬂ){lm G(z')
z
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hQ) = e+ €

FIG. 8. Breaking of a Cooper pair by a phonon below the 2A

threshold.
} ) (55)

It is important to note that the coherence factors in Eq. (55)
are the same for pair breaking and recombination, and for
trapping with phonon emission and detrapping with phonon
absorption. Interference patterns are identical for both pairs
of processes, and hence, coherence factors must be the same.
This is a fundamental consequence of time-reversal symme-
try and (as expected) is equally true for electron-phonon in-
teractions in a superconductor involving only continuum'>
and discrete states.

Calculating integrals in Eq. (55) for the dilute limit, we
obtain

A
- —Im F(z')
Z

232 _o\12
)’B(Q)=27TN(O)AC(1 vo) {a%(ﬂ)(Q/A-H yo)

AN 1-y, QA-1-y,

QA -1 — v\ 112
+S(S+1)a§(Q)(Q;T1§0) }[1 - fol&)
- Yo

-fo(Q-€)] (56)

for the pair-breaking rate and

?(2)D(z) 1
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FIG. 9. Phonon self-energy.

G(k',@ )

_2)32 172
(@) = 27N(0) (1 -y2) {am)<9m+ 1 +y0>

hN l—yo Q/A—1+y0

L (QA-1 +y0)1/2:|
+S(S+ l)az(Q)(—Q/A 1ty
X[fol€) = fo(Q + €)] (57)

for phonon scattering.
V. DISCUSSION

A. Coupling strength for continuum-bound-state transitions

The existence of discrete intragap states opens up interac-
tion channels which are not available in an ideal supercon-
ductor. The important question arises, therefore, as to
whether there are circumstances under which the impurity
effects may actually dominate intrinsic behavior. For ex-
ample, the intrinsic recombination process should become
increasingly inefficient as temperature decreases to a point
when there are only a few thermally excited QPs left in the
whole of a superconductor, yet it is often observed that QP
lifetimes are finite even at the lowest temperatures. To deter-
mine whether the new interaction channels associated with
the discrete levels due to magnetic impurities are capable of
explaining these temperature anomalies, we must first evalu-
ate the coupling strength for inelastic phonon-assisted tran-
sitions between continuum and discrete states.

The most convenient parameter for the strength of inter-
action is the electron-phonon coupling constant, which (in an
ideal superconductor) is described by the Eliashberg function
a*(z)®(z). In our earlier calculations of the effect of discrete
states we introduced modified Eliashberg functions to dis-
cuss the interaction. We found that these depend on both the
superconductor and the nature of the impurity itself. In order
to evaluate the coupling strength for interactions involving
discrete levels, we compare the two Eliashberg functions,
one conventional and the other for the interaction involving
the discrete state. Taking the ratio of two Eliashberg func-
tions (31) and (32), after integration over angles, we obtain

X wdz-a,) f (dO j4m)(e - q/q)*|u, (@)

af’z(z)CD(z) ) 27N(0)E, Aaf

. (58)
2
0 Eq,j kavjqﬁ(z - wq’j)f (dOp/47T){f (dOk/47'rkF)[eq,j (p- k)ul,z(p - k)|k:kF]}

where v; is the sound velocity for the j branch. Evaluating N(0) for the model of a spherical Fermi surface and approximating

2 we have

the integral over dOy by [u,,(q— 0)[*~]u,,(0)

174501-10



INELASTIC SCATTERING OF QUASIPARTICLES IN A...

a*(2)P(z) 11 vz
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|uei(0) |2

&, DG 2 (ka,) v, A f

where vy and v, are the Fermi velocity and mean sound
velocity, respectively. Assuming that the impurity potentials
are exponentially decaying functions with the radii a; ,, we
obtain  the  approximation  u,(p—K)=u;,(0)/[1+(p
—k)za%’z]z. Here the form factor defines the interaction vol-
ume in momentum space. The remaining integrals in Eq.
(59) are easily evaluated, leading to an estimate of the ratio
of Eliashberg constants for the two types of interaction,

(d) _ 2vp | (m)“ RO
a%,Z(A) 7T3 Uy (kFaO)2 |Ml,2(0)|2 ’

It follows from Eq. (60) that the characteristic ratio of cou-
pling constants depends mainly on the sharpness of the scat-
tering potentials. Thus for a, ,=a, the effect of coupling to
an impurity is comparable to that of conventional electron-
phonon coupling due to the possibility of losing QP momen-
tum by scattering on a sharply localized impurity potential.
With increasing a;, the interaction volume in momentum
space rapidly shrinks because of its strong dependence on the
form factor, so that coupling to an impurity state weakens.
However in this situation the effects of intragap levels can be
significant if the concentration of impurities is sufficiently
high but still within the validity range of the dilute limit.

(60)

2N

B. Continuum-bound trapping

In comparing the relative strengths of the intrinsic inelas-
tic process and that leading to trapping at impurities, it is
valuable first to contrast their dependence on QP energy. As
seen from Eq. (45) for energies close to the gap edge, the
dependence of the impurity trapping rate is weak but in-
creases to a linear asymptotic dependence at high energies.
The rate of spontaneous emission of phonons in intrinsic
superconductors at €= A follows a cubic power of e, reflect-
ing a quadratic density of states for phonons in the Eliash-
berg function a?(z)®(z)z>. A lower power is found for
transitions to bound states due to the reduction in the above
exponential by one, leading to a’%,z(Z)CI)(Z)OCZ. This can be
seen from the definition of cour@lg constants (30), which
are inversely proportional to Ve, ;. A further reduction in
power exponent by unity arises from the fact that in an in-
trinsic superconductor, transitions may proceed into all states
below the initial one with the integral resulting in an extra
power in initial energy, which does not occur for transition
into a discrete state. The smaller exponent for QP trapping on
a discrete state has an important implication for nonequilib-
rium effects in multiple tunneling superconducting tunnel
junctions (STJs).!617

In order to estimate the order of magnitude of the
continuum-bound trapping rate, we consider Ta as a typical

(dO j4m) J (d0 4k, le, ;- (=K, ,(p— K], ]

- (59)

superconductor. Assuming the presence of Kondo impurities
with a discrete state residing deep inside the gap, we will
take for an estimate €,=1/2A. Using Eq. (45) we can esti-
mate ﬂrap=c‘172 for trapping from the edge of the gap €
=A. Assuming also that the discrete state is strongly local-
ized and taking S(S+1)(a,/ap)*=1, we then have 7,=r,.
For Ta 7p=1.8 ns (Ref. 15) so that 7,,~ 1.8/c ns. The ob-
served lifetimes in Ta, at such low temperatures that thermal
recombination is absent, are typically several tens of
microseconds!18-23 leading to an estimate for ¢ of between
11075 and 1 X 107 or a range of impurity concentration of
10-100 ppb. Thus even if the state were not strongly local-
ized, for example, say (a,/a,)*=100, in order to produce the
observed QP lifetimes in Ta at low temperature, it would
require a concentration of only 1-10 ppm. Such levels are
still well below those usually regarded in content analyses as
“trace” impurities.

C. Continuum-bound recombination

For reasons similar to those explained above, continuum-
bound recombination due to collisions with QPs occupying
impurity levels has a different dependence on energy, being
linear rather than quadratic, compared with intrinsic recom-
bination. The ratio of the appropriate coefficients for the two
types of recombination according to Eq. (51) is of the same
order of magnitude as the ratio of respective Eliashberg con-
stants (60), and hence, is close to unity for recombination on
a strongly localized state.

Comparing the magnitudes of maximum recombination
rates under quasiequilibrium conditions for the two different
processes, we obtain

Rn, [2A (A—eo)<A+eo>a%(A)
——==c\|——exp o (61)
Rny =T T 2A ) a(A)
where n, 7 and ny are thermal distributions of trapped and
mobile QPs. Hence, for even a small impurity density, re-
combination on the traps at low temperatures is a stronger
process because of the presence of the exponential factor.
The presence of this factor may significantly accelerate re-
combination at low temperatures in superconductors contain-
ing concentrations of magnetic impurities which are below
trace levels. Moreover, the possible formation of an intragap
band of bound states, and also of discrete bound states in the
vicinity of the Fermi level, can significantly change the ob-
served temperature dependence of recombination and ther-
malization rates.
An important consideration in discussing recombination
in real samples is the phonon-bottleneck effect. A phonon
which has been released in the recombination process must
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FIG. 10. Responsivity of a Nb/Al,03/Nb STJ as a function of
photon energy.

be lost from the system to avoid breaking a further Cooper
pair. When a QP with initial energy below A+ €, recombines
with a second QP bound at an impurity with energy ¢, the
emitted phonon has energy less than 2A. This phonon can
break a Cooper pair only if one of the resultant QPs occupies
an impurity level, and therefore, has a much lower probabil-
ity of pair breaking because of the low density of impurities.
However, the decrease in pair-breaking efficiency for sub-2A
phonons may be partially compensated by their longer es-
cape time, which occurs because phonons escape from an
acoustically softer superconductor into a rigid dielectric sub-
strate is constrained to lie within the critical escape cone
defined by the critical incidence angle for the
superconductor-substrate interface.!® Thus the process of
phonon scattering from outside to inside the critical cone
becomes crucial; in general, this conversion is less efficient
for lower-energy phonons. Nevertheless despite the extra
complications discussed above, impurity enhanced recombi-
nation is the principal recombination channel at the lowest
temperatures because of the much higher occupation num-
bers for the impurity bound states.

D. Analysis of existing experimental data

Experimental data indicating the likely presence of such
processes have been obtained by several groups. A crucial
piece of evidence indicating the presence of local traps in
superconductors is the strong dependence of the responsivity
(charge output per unit deposited photon energy) of STJ pho-
ton detectors on the photon energy,”* as shown in Fig. 10 for
a niobium STJ. The number of nonequilibrium quasiparticles
generated by the absorption of a photon scales linearly with
the photon energy E, while responsivity is directly propor-
tional to QP lifetime.>* Thus the presence of a strong non-
monotonic dependence as shown in Fig. 10 is a direct evi-
dence of quasiparticle trapping. The effect is most clearly
seen at low densities of nonequilibrium QPs (small photon
energies), since at the low temperature of the experiment
(=100 mK) most of the states on the traps are vacant and
responsivity is at its lowest value. With increasing photon
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FIG. 11. Normalized responsivity of a symmetrical TaAl (30
nm) STJ vs temperature: + are optical photons (4.1 eV); ¢ are
x-ray (5.9 keV) photons.

energy, responsivity starts rising as more QPs become
trapped hence leaving fewer trap vacancies. With further in-
crease in photon energy, and hence QP density, responsivity
approaches a maximum as all traps become saturated. Finally
at even higher QP densities the responsivity decreases be-
cause of recombination.

A second experiment highlighting the role of QP trapping
is the measurement of the temperature dependence of respon-
sivity, and therefore, of QP lifetime,'! as illustrated in Fig. 11
for x-ray and optical photons for a tantalum sample, with the
data for both normalized to the value at 600 mK showing the
effects both of detrapping and thermal recombinations. The
x-ray responsivity does not fall off at low temperatures since
the traps remain completely filled by the much greater num-
ber of generated QPs. Similar data were recently obtained by
the kinetic inductance technique for tantalum and aluminum
films on a different substrate.!® These are shown in Fig. 12.
The inset of this figure shows that, contrary to the predictions
of BCS theory for the ideal superconductor (dashed lines),
the QP lifetime rises exponentially with decreasing tempera-
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FIG. 12. The relaxation times as a function of reduced bath
temperature for 150 nm Ta on Si (solid box, solid circle), 100 nm Al
on Si (A), 250 nm Al on Si (V), and 250 nm Al on sapphire (<)
samples. The inset shows the same data on a linear scale.
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ture only at 7/7.=0.15, remaining finite at low tempera-
tures.

Values of QP lifetime obtained for a variety of different
materials®® 23 at low temperatures are consistently, in some
cases by orders of magnitude, shorter than can be explained
simply by thermal recombination of nonequilibrium QPs
(Ref. 15) and in addition are independent on temperature. It
is likely that such relaxation process occurs through inelastic
transitions with phonon emission as described earlier. As
temperature increases, the QPs in bound states are activated
into the continuum states and hence are able to contribute to
the observed response. Ultimately, the effective QP lifetime
increases with temperature until through the exponentially
rising density of thermal excitations, thermal recombination
becomes a dominant mechanism of QP relaxation.

Based on the theory developed in this paper quantitative
analysis of such experimental data is now possible with the
use of microscopic rates given above together with the rates
for transitions in the continuum part of the spectrum. The
main microscopic parameters are: concentration of magnetic
impurities ¢, the discrete level energy ¢, the two character-
istic times 7, for the deformation-potential coupling and 7,
for spin-lattice coupling, which depend both on the host su-
perconductor and the specific defect, and parameters describ-
ing the residual QP losses. None of the previous experimen-
tal data sets is sufficiently complete to determine all model

PHYSICAL REVIEW B 78, 174501 (2008)

parameters independently, and dedicated experiments are re-
quired in order to test the model in quantitative detail. The
most important objective, however, is the identification of
the defect itself which is responsible for breaking time-
reversal symmetry with the formation of a discrete intragap
level.

VI. SUMMARY

We have shown that the effect of small concentrations of
magnetic impurities on transport properties of superconduct-
ors may be much greater than has previously been assumed.
The localized QP states associated with discrete impurities
facilitate trapping-related effects analogous to those occur-
ring in semiconductors. It is likely that such processes are
responsible for unexplained effects previously observed in
samples containing such impurities only at trace level. The
different mechanisms for inelastic scattering of the QPs are
also relevant for electron decoherence in normal metals with
Kondo impurities, which are currently the subject of great
interest.?>26
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